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SUMMARY 

A revised version of Dodge’s split-velocity method for numerical calculation of compressible duct flow 
has been developed. The revision incorporates balancing of mass flow rates on each marching step in 
order to maintain front-to-back continuity during the calculation. The (chequerboard) zebra algorithm 
is applied to solution of the three-dimensional continuity equation in conservative form. A second- 
order A-stable linear multistep method is employed in effecting a marching solution of the parabolized 
momentum equations. A chequerboard iteration is ued to solve the resulting implicit non-linear 
systems of finite-difference equations which govern stepwise transition. Qualitive agreement with 
analytical predictions and experimental results has been obtained for some flows with well-known 
solutions. 

KEY WORDS Modified Dodge Algorithm Parabolized Navier-Stokes Computational Fluid Dynamics Low 
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INTRODUCTION 

It has been said that the full Navier-Stokes equations represent the ultimate mathematical 
model upon which to base numerical algorithms for predicting flows of practical significance. 
However, even with the advent of the so-called vector computers with vast virtual memory 
and quadrupled processing speeds, extant numerical and computational difficulties are 
sufficient to merit a search for simpler mathematical models and less complicated numerical 
methods which can still provide useful solutions to problems of interest. Thus, considerable 
analysis and numerical experiment has been devoted to the exploitation of parabolized 
marching methods for flow prediction. References 1 to 7 represent a perhaps typical but by 
no means exhaustive sampling of the available literature on this subject. 

The parabolized marching methods are somewhat more general in application than the 
classical boundary-layer approach, since transverse pressure gradients are not disregarded 
and, in some cases, upstream influences can be transmitted through the pressure field. 

* Professor. 
i Aerospace Technologist. 

027 1-2091/83/050493-14$01.40 
@ 1983 by John Wiley & Sons, Ltd. 

Received 29 January 1982 
Revised 5 August 1982 



494 C. H. COOKE AND DOUGLAS M. DWOYER 

However, the basic assumption that streamwise viscous diffusion can be neglected restricts 
application to flows with a primary flow direction, limited upstream influence, and which may 
exhibit, at worst, crossplane recirculation. Unfortunately, in subsonic and transonic wind- 
tunnel flows, the elliptic upstream influence can be a significant factor in the flow dynamics; 
hence, interest arises in simpler mathematical models which permit this interaction. A case in 
point has been the development of Dodge’s velocity splitting method, which allows global 
propagation of influence through the pressure field and which has met with successes in both 
unconfined compressible and confined compressible However, the method is not 
yet fully proved. 

In this paper we shall be concerned with the application of a compressible formulation of 
Dodge’s split velocity technique’ to the calculation of developing flow in a square duct. The 
original method has been revised to effect constant mass flow rate on each transverse plane 
while marching down the channel. Parabolized momentum equations are employed. How- 
ever, a fully elliptic pressure field is allowed by the iterative manner in which the solution of 
the continuity equation is coupled into the calculation procedure. Application of the 
presently developed computer algorithm is restricted to subsonic flow. It could readily be 
altered to allow transonic calculations through modification or replacement of the algorithm 
used to solve the conservative continuity equation. 

Computational simplicity as well as numerical stability is achieved in marching the 
momentum equations with an A-stable” implicit linear multistep method, the equations of 
which are iteratively solved at each step by employing chequerboard successive overrelaxa- 
tion. Although this solution procedure may be considered expensive, the presence of 
quadratic as well as higher order non-linearities in the parabolized momentum equations 
requires that some iteration be employed to improve accuracy. As an extra benefit, the 
wide-ranging stability of the resulting marching equations appears well worth the cost. 

Finally, the peak efficiency of the methods developed is undoubtably best realized on the 
computer system for which it has been designed, namely, the Cyber 203. For such machines, 
a numerical algorithm must effectively exploit the array-processing capabilities; otherwise, 
methods which are not highly vectorizable misuse the available computing potential and can 
result in quite ordinary processing speeds. The explicit nature of the chequerboard algorithm 
yields a highly vectorizable method ideally suited for the array processor. 

In certain parabolized marching schemes for confined flow,’ it has been the practice to 
decouple streamwise and transverse pressure gradients. Some argue” that this is necessary in 
order to obtain meaningful physical solutions with parabolized equations. Although results 
are still inconclusive, computational experience gained in the current research appears to 
support this belief. Weak, but not total, uncoupling of the streamwise pressure gradient has 
appeared necessary, although this may stem from the manner in which local continuity of 
mass flow is enforced. 

As noted by Patanker and Spalding; the description of a numerical procedure for solving 
the Navier-Stokes equations can have two aims, which are seldom possible or desirable to 
accomplish simultaneously. The first aim is to convey to the reader an understanding of the 
major principles in sufficient detail that someone with a background in the area could 
improvise the remainder for himself. The second aim is to present the particular equations 
and all approximations employed to a degree that the computational experiment could be 
identically reproduced. However, the second mode requires such proliferation of detail that 
smooth reading is impeded and understanding is inhibited. Therefore, the first aim has been 
chosen for the present paper, and this will be attempted in the following sections. 
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PARABOLIZED GOVERNING EQUATIONS 

The non-dimensional Navier-Stokes equations for compressible steady flow with which we 
shall be concerned are presented below. 

Continuity 

V . p k = O  

Momentum 

P 4 P  p(k . 0)k = -VP-v x - v x k +v - - v . k 
Re 3 R e  

Energy 

(3)  T =  T -"z 
0 2  

Here, for flow in ducts with non-conducting walls, the usual energy equation has been 
replaced by the algebraic constant total temperature relation (3). The constitutive relations 
are 

and the viscosity approximation 

For subsonic flow the governing equations are elliptic. However, a common approximation 
used to parabolize these is obtained by neglecting streamwise diffusion terms in 
equation (2). With the exception of the entry region, the approximation is considered valid 
for flow in channels whose lengths are large compared to half-width.2 Perhaps it should be 
remarked that when Dodge's method is applied in obtaining numerical solutions of these 
equations the approximation is only a partial parabolization, since the pressure field is 
obtained from an elliptic boundary value problem. This, of course, allows global propagation 
of disturbances, through the pressure field and the iteration process. 

DODGES METHOD 

Introduction 

In Dodge's method, the total velocity vector k is arbitrarily decomposed as a sum of 
rotational and irrotational parts: 

k = V + + i i  (6) 
where + is a scalar potential. Pressure is hypothesized to depend solely upon the irrotational 
velocity according to the isentropic relationship 
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However, density is decomposed as the sum of a viscous contribution pv and an isentropic 
contribution p*:  

P = P v + P "  
where 

Substituting equations (6), (7), and (9) in equations (1) and (2) leads to the so-called split 
equations 

v . p 04 =-v. pii (10) 
and 

p ( w . v ) w - p * ( v 6 , . v ) v ~ + v x  - v x w  -v --v.w = o  
( L e  ) C L e  1 

Equations (10) and (11) are to be iteratively solved: equation (10) with a 3-0 relaxation 
method for elliptic equations, following which the parabolized version of equation (1 1) is 
marched downstream by employing a chequerboard iteration to solve an implicit system of 
equations at each step. A synopsis of the iteration procedure is now presented. 

Overview of iteration procedure 

Determine a suitable initial pressure distribution Po by estimating a global q5 distribu- 
tion. In this investigation, pressure on the first pass is assumed to be a function of only 
streamwise displacement, and a mass-balancing operation establishes the initial pres- 
sure field. 
Employing the current pressure field, march a parabolized version of equation (11) 
down the duct, simultaneously storing the right-hand side of equation (10). (See also 
equation (17)). 
Solve equation (10) (or equation (17)) to obtain an updated pressure field. 
Repeat the computational pass consisting of steps (2) and (3)  until sufficient passes and 
a converged pressure field are obtained. 

Dodge's method revised 

Dodge' reports problems arising from adjustment of front-to-back continuity require- 
ments with an iteration which is similar to that previously outlined. It is expected that this 
slow convergence stems from incomplete satisfaction of the continuity equation which could, 
for example, be solved after the momentum march terminates in some form such as 

v . pn V& = -v . (p&I (12) 

This is in contrast to the usual parabolized marching methods, for which both mass and 
velocity variables are updated at each marching step. 

Physically, in order to maintain continuity in a channel flow, the mass flow rate 

must remain constant at each transverse plane. However, in Dodge's (unrevised) method this 
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provision is only weakly incorporated through equation (lo), which is solved globally upon 
termination of a marching pass. Thus, poor satisfaction of mass balancing during the 
momentum marching process is only to be expected, as numerical experimentation indicates. 

Consequently, the Dodge technique is to be revised in a manner which alleviates this 
difficulty. This is accomplished by expressing + as 

+(XI = dt+&x, Y, 2 )  (14) 

with g(x) iteratively chosen to balance mass flow rate at location x. 
In the usual Dodge 

In the revised version 
iteration according to 

method, pressure gradients on pass n are chosen from the equation 

aP 
- = - [p*(V+ . 0) 041; 
ax, 

pressure gradients are allowed to develop during the mass balancing 
the equations 

where the balancing iteration on mass flow rate is 

and g, is obtained by second order backward differencing. 
First attempts at choosing 4 as a solution of 

were unsuccessful, due largely to the fact that the elliptic-hyperbolic transition point of (20) 
can differ markedly from the physical. This difficulty is largely alleviated, although not to  
totally circumvented, by choosing 4 from the equation 

v . ( P  V+), =v . (PU1n-l (21) 
whose transition point more closely approximates the physics of the flow. Clearly, choice of g 
does not affect mixed derivatives, or cross plane derivatives of 4. 

The procedure outlined represents a weak decoupling of the streamwise pressure gradient, 
since the g terms are the dominant contributions, and since these contributions are 
determined from local plane-to-plane continuity considerations, somewhat independently of 
the output from the global continuity equation (equation (21)) on the previous pass. 

NUMERICAL ANALYSIS 

The algorithm deemed most efficient for numerically solving equation (21) on the array- 
processing computer is the zebra algorithm of South et all3 This 3-D relaxation technique is 
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in some respects similar to the hopscotch method of G0ur1ay.l~ In equation (21) central 
differences are applied to all derivative terms. Variables in plane i are updated in chequer- 
board fashion, plane by plane in a downstream sweep, using already updated values at plane 
i - 1 and old iteration values in plane i + 1. Iterative repetition of downstream sweeps is used 
to converge the field, with a relaxation parameter employed to speed convergence. 

A second-order accurate, implicit linear multistep method is used on equation (11) to 
march in the stepwise direction. The implicit equations are iteratively solved using a 
chequerboard successive overrelaxation scheme, with mass balancing built in as previously 
described. Streamwise derivatives are backward differenced second-order accurate, whereas 
derivatives in the (transverse) cross-plane are approximated second-order using central 
differences. A prediction of form 

is used to initially estimate a velocity variable in plane i. The chequerboard method is then 
employed on the differenced counterpart of equation (11) to update variables in plane i in 
two cycles, with values updated on cycle 1 fed into the succeeding cycle. This two-cycle 
update process is iterated, employing equations (16)-(19) to alter the flow speed and 
pressure gradients until a balance in mass flow is achieved. 

DEVELOPING €TOW IN A STRAIG~HT DUCT 

The revised method of Dodge has been employed to develop a finite-difference numerical 
model for three-dimensional viscous flows in confined regions. For boundary-layer resolu- 
tion, the capability to allow individual co-ordinate stretching in each co-ordinate direction 
has been incorporated. The method so developed has been programmed using the SLI vector 
language for the Cyber 203 array processor, and appears debugged. The 32-bit half-word 
option of SLI has been employed in programming the zebra relaxation algorithm for solving 
equation (21), whereas 64-bit full-word arithmetic is used in programming the chequerboard 
marching algorithm. The program has been tested by application to the problem of 
computing the steady developing flow in a straight duct (see Figure 1). Boundary conditions 
for the problem are now given. 

Figure 1. Quarter channel computational domain 
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Boundary conditions 

499 

Inflow. T =  To-$u2 
specified velocity profiles, wo = H(y, z), 
pi = R(y, z ) ,  Pi =constant 
+X(O, Y, 2) = g(0) = go 

Duct walls. Velocity no slip, +,, = 0, T = T,, p = pw 

Outflow. pv extrapolated, + = +,, g, extrapolated 

Artificial barriers. The computational domain is taken to be one quarter of the total duct 
cross-section, and symmetry conditions are applied at the two resulting (non-wall) artificial 
barriers. Here the normal velocity component vanishes together with normal derivatives of (b 
and the other velocity variables. The variables P and T, of course, depend on + and velocity 
at these boundaries. However, for constant total temperature, vanishing normal derivative in 
T, p is the natural boundary condition. 

COMPUTATIONAL RESULTS 

Introduction 

An assessment of approximation error inherent in numerical solutions of parabolized flow 
models computed with the revised Dodge’s method has been undertaken. This has been 
accomplished for certain flows whose solutions have been either analytically or experimen- 
tally determined and which are available for comparison with numerical results. 

Two-dimensional channel flow, Re = 100 

Numerical solutions for two-dimensional, low Mach number ( M  5 0.05) flow in a straight 
channel (see Figure 2) have been computed, employing a uniform mesh of 17 X 17 x 100 
nodes. The development of the normalized centreline velocity component Vx/ U characteriz- 
ing the two-dimensional channel and the corresponding results of Goldstein and Kreidl’ for 
three-dimensional flow in a square duct are compared in Figure 2. For the fully developed 
case Schlicting16 gives a limiting value VJU = 1.52. The corresponding maximum value from 

2-0 > 

Y 

Figure 2. Comparison of normalized centreline velocity development for two and three-dimensional channel flow 
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Figure 3. Deviation from a parabolic profile of the streamwise velocity component at outflow-two-dimensional 
flow 

the computational results of Figure 2 is V J U  = 1.425. This represents a relative error of six 
per cent or less, depending upon how fully developed the numerically calculated flow is 
considered to be. One should perhaps also bear in mind that Schlicting’s results come from 
matched asymptotic expansions, which are in themselves approximate methods. Figure 3 
exhibits typical spanwise deviation. from a parabolic profile characteristic of V, at numerical 
full development. The maximum error is again on the order of five or six per cent. 

Three dimensional duct flow, Re = 100 

A 3 2 ~ 3 2 x 1 0 0  mesh has been employed to compute low Mach number, three- 
dimensional flow in a square duct. Streamwise variation in centreline velocity component V, 
and pressure P are shown in Figures 4 and 5. A comparison between numerical calculations 
for VJU and the corresponding experimental results of Goldstein and Kreidls is shown in 
Figure 6. Comparative fully developed values for VJU at centreline for the two cases are 
1-93 and 2.10. Including grid stretching in the calculation improved the former value to 
1.9725. This again represents a relative error in the vicinity of six per cent. 

Figures 7-9 show numerical performance indicators which trace the convergence history of 
a typical calculation. Here two kinds of outflow boundary conditions for solution of the 
elliptic velocity potential equation have been tested. For the calculation represented by 
Figure 9, a Dirichlet condition was applied. Although a seemingly more rapid, non- 
oscillatory convergence history is observed, distortion is streamwise velocity and pressure 

W 

0 1 2 3 Y 6 
STREFmWISE DISTAFICE 

Figure 4. flow development for streamwise velocity component-three-dimensional duct flow 
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8.8 
0 1 2 s Y 6 

STREFIMIISE DISTRNLT 
Figure 5. Streamwise development for centreline pressure-three-dimensional duct flow 

profiles near the channel exit accompanied its application. A Neumann boundary condition 
appeared to eliminate these non-physical distortions, but at the misfortune of a more 
sluggish, oscillatory, convergence history (see Figures 7 and 8). The Neumann condition was 
chosen for the calculations heretofore discussed. 

Figures 10 and 11 show characteristics of the exit crossflow and boundary-layer profiles for 
the streamwise velocity component. In calculating the fully developed crossflow of Figure 11, 
a channel length of X,= 12 units with a coarse mesh having 144 downstream nodes was 
employed. The sink irregularity near channel centreline in Figure 10 was observed to move 
closer to channel centre as the length increased, and appeared to have coalesced with it in 
the calculation of Figure 11. The tendency of the core flow to be directed towards channel 
centreline (see Figures 10 and 11) is in qualitative agreement with the theoretical predictions 
of Rubin4 concerning the asymptotic behaviour of duct crossflow. 

?? 
%5 
ir EXPERIMENTAL 

NUMERICAL 

yH 0 
0 .@I .m .12 * 18 .a 

STREF\MJISE DISTWCE X/RE 
Figure 6. Experimental versus computed development for streamwise velocity component-three-dimensional duct 

flow 



502 

T- 
C. H. COOKE AND DOUGLAS M. DWOYER 

Figure 7. Iteration history, corner and centreline pressure at the outflow-Neumann condition 

CPU time 

A computer code for the revised version of Dodge’s method employs the SLI-language for 
the Cyber 203 version of the CDC-STAR computer. With a 17 X 17 X 196 mesh, measured 
time for program execution was found to average 2-3 X computer resource units 
(CRU’s) per node per model equation per pass. (This assumes only four model equations, 
since the energy equation was replaced with an algebraic relationship.) A pass consisted of 
marching the momentum equations once down the duct, iteratively solving an implicit system 
for velocity propagation at each streamwise station using a chequerboard scheme, and then 
finding the zebra solution of the three-dimensional velocity potential equation. When 
measuring performance in CPU seconds per node per model equation per pass, the 
corresponding figures becomes 4.14 x lop4. 

Figure 8. Iteration history, streamwise increment in velocity potential-Neuman condition at outflow 
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1 8 15 22 3 
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Figure 9. Iteration history, corner and centreline pressure at outflow-Dirichlet condition on velocity potential 

Figure 10. Crossflow and boundary-layer profile for streamwise velocity component at channel exit, Re = 100, 
X m ~ 3 + 0  
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SUMMARY AND CONCLUSIONS 

A revised version of Dodge’s velocity-split method for numerical solution of compressible 
confined flow has been developed. Numerical results from test calculations for low Reynolds 
number flow appear encouraging. In particular, qualitative but not wholly satisfactory 
quantitative agreement between present calculations and analytical predictions of Schlict- 
ing16 and Rubin: together with experimental measurements of Goldstein and Kreid,ls has 
been achieved. 

However, the method is by no means fully understood or exhaustively and conclusively 
tested. A curious feature of the present approach is the need for weak decoupling of the 
streamwise pressure gradient, found necessary in order to achieve a convergent numerical 
solution. However, Spalding” alleges that to obtain meaningful solutions using parabolized 
equations such a full decoupling is necessary. Further, Brileyl reports successful and 
quantitatively accurate calculations obtained with an algorithm which incorporates this 
practice. Be that as it may, in this study convergence problems, first manifested by 
irregularities in the entrance region of the duct, were observed, but disappeared upon weakly 
decoupling the streamwise pressure gradient. Even so, the numerical calculations appeared 
overly sensitive to the treatment of the inflow, a characteristic of parabolized duct flows 
perhaps hinted at by Briley’s suggestion of shutting off the crossflow in the first few steps of 
the march.* Rubin4 alleges that the full Navier-Stokes equations are required to properly 
model entry region flow. Hence, the failure to properly smear errors in this region may have 
been the root problem, assuming such errors can be widely propagated, either upstream or 
down, in solving the elliptic velocity potential equation. 

In addition to cases previously recorded, a convergent numerical solution for Re = 1000 
flow in a duct of length Xm=6 has been achieved. However, for satisfactory calculations at 
high Reynolds numbers, or for longer ducts, a more powerful adaptive grid capability than is 
to be afforded by simple stretchings in individual co-ordinates appears necessary. In duct 
flow the driving mechanism is streamwise boundary-layer growth and concomitant flow 
acceleration in the core, with the induced crossflow strongest away from the walls. Hence, as 
the flow develops near-wall gradients decrease, or spread in extent, while core gradients 
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grow. For high Reynolds numbers the result is that a grid system with a simple stretching 
mechanism set to capture entry region boundary layers is likely to become insufficient for 
resolving the more complex global patterns which emerge as the flow develops. Since 
boundary-layer thickness is thought to grow proportional to (x/Re)1’2, it appears that the 
ideal grid should adaptively relax near-wall clustering in some such fashion. 

The revision of Dodge’s method reported herein as regards mass balancing is new, 
although classical in its physical origins and used previously with many other computational 
schemes. For flow in a straight duct it appears to be highly useful. However, the original 
intent of this investigation of Dodge’s method was to discover its possible utility as a tool for 
solving the slotted wind-tunnel problem, where it was felt that the upstream influence 
permitted by the elliptic velocity potential equation would be highly desirable. This could 
well be so, were the method found workable without resort to the mass-balancing stratagem. 
However, it is not felt that the present formulation with added on mass-balancing can be 
useful. This is because of the possibility of large pressure variations from tunnel to plenum, 
which would make the simultaneous balancing of mass on a plane extending over two 
essentially disparate channels with limited communication through the slots unfeasible, as 
balancing over the entire region would have to be accomplished through tuning the 
streamwise pressure gradient. 

Possibly the most successful innovation of this investigation is the use of the chequerboard 
iteration as a tool for solving at each marching plane the implicit finite-differenced momen- 
tum equations. It should be noted that the chequerboard algorithm used is different from 
either the hopscotch method used by Rudy17 or the recent hopscotch innovation of 
Greenberg.*’ In both cases, iteration is not practised in solving an implicit system; hence, the 
well-known inconsistency of the hopscotch method becomes significant, at least during the 
transient calculation. In the present case no transient exists, since the steady equations are 
being solved. The inconsistency of the usual hopscotch method is thus hard to bear, as it 
could head to problems in solution accuracy. 

LIST OF SYMBOLS 

Y 
T 
TO, P O ,  Po. ao, Po 

cb 

D 
M 

a 

VJ u 

specific heats 
static pressure 
density 
three-dimensional velocity vector 
viscosity 

Reynolds number, _____ P o a o D  
PO 

CJCV 
temperature 
reservoir values for temperature, pressure, density, speed of sound, and 
viscosity 
scalar potential 
relaxation of parameter 
channel half-width 
Mach number 
ratio of channel streamwise velocity component to entrance value 
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